Visualisation of three-dimensional microcracks in compact bone.
نویسندگان
چکیده
Microdamage in bone contributes to the loss of bone quality in osteoporosis and is thought to play a major role in both fragility and stress fractures (Schaffler et al. 1995). In this study, in vivo microcracks in human ribs were bulk-stained in basic fuchsin and viewed in longitudinal section and in 3 dimensions using 2 different computer-based methods of reconstruction: (1) serial sectioning of methylmethacrylate embedded sections using a sledge macrotome and identification of microcracks using UV epifluorescence followed by computerised reconstruction of microcracks using software and (2) laser scanning confocal microscopy of thick sections followed by reconstruction of microcracks into a 3-D image. The size and shape of microcracks were found to be similar using both techniques. Both techniques of reconstruction showed microcracks to be approximately elliptical in shape. From the serial sectioning reconstructions (n = 9), microcracks were found to have a mean length of 404 +/- 145 microm (mean +/- S.D.) (in the longitudinal direction) and mean width of 97 +/- 38 microm (in the transverse direction). Using epifluorescence microscopy, 92 microcracks were identified; mean microcrack length was 349 +/- 100 microm in the longitudinal direction. This was consistent with other results (Burr & Martin, 1993) and with the theoretical prediction of an elliptical crack shape with aspect ratio (longitudinal: transverse) of 5:1 deduced from analysis of random 2-D sections (Taylor & Lee, 1998). The results obtained provide new data on the nature of microcracks in bone and the method has the potential to become a useful tool in the calculation of stress intensity values which indicate the probability of an individual microcrack propagating to cause a stress or fragility fracture.
منابع مشابه
Characterizing microcrack orientation distribution functions in osteonal bone samples.
Prefailure microdamage in bone tissue is considered to be the most detrimental factor in defining its strength and toughness with respect to age and disease. To understand the influence of microcracks on bone mechanics it is necessary to assess their morphology and three-dimensional distribution. This requirement reaches beyond classic histology and stereology, and methods to obtain such inform...
متن کاملHaversian cortical bone model with many radial microcracks: an elastic analytic solution.
In this study, the fracture micromechanics of Haversian cortical bone has been considered. To this effect, a two-dimensional micromechanical fibre-ceramic matrix composite tissue materials model has been presented. The interstitial tissue was modeled as a matrix and the osteon was modeled as a fibre, followed by the application of linear elastic fracture mechanics theory. The solution for edge ...
متن کاملThe effect of bone microstructure on the initiation and growth of microcracks.
Osteonal bone is often compared to a composite material and to metals as discontinuities within the material may provide sites of stress concentration for crack initiation and serve as barriers to crack growth. However, little experimental data exist to back up these hypotheses. Fluorescent chelating agents were applied at specific intervals to bone specimens fatigue tested in cyclic compressio...
متن کاملSynchrotron Radiation Micro-CT at the Micrometer Scale for the Analysis of the Three-Dimensional Morphology of Microcracks in Human Trabecular Bone
Bone quality is an important concept to explain bone fragility in addition to bone mass. Among bone quality factors, microdamage which appears in daily life is thought to have a marked impact on bone strength and plays a major role in the repair process. The starting point for all studies designed to further our understanding of how bone microdamage initiate or dissipate energy, or to investiga...
متن کاملFatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
In vivo microcracks in cortical bone are typically observed within more highly mineralized interstitial tissue, but postmortem investigations are inherently limited to cracks that did not lead to fracture which may be misleading with respect to understanding fracture mechanisms. We hypothesized that the one fatigue microcrack which initiates fracture is located spatially adjacent to elevated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of anatomy
دوره 197 Pt 3 شماره
صفحات -
تاریخ انتشار 2000